M1

Sustainable Concepts in Regional and Urban Planning: a Holistic Vision

.... In order to prevent this!
Content

1. // Expanding Challenges
 1.1. Global Indications of Climate Change
 1.2. Urban Population in the World
 1.3. Energy Sector in EU
 1.4. Challenge to Urban Structures
 1.5. Paradigm Shift

2. // Climate Change and Energy
 2.1. Sustainability Concepts
 2.2. How to Achieve Carbon-free Life?
 2.3. Why Cities and Municipalities?
 2.4. Exercise: Carbon Footprint of Trainees
1. Expanding Challenges
1.1. Global Indications of CC

Many undesired processes are underway, for instance:

• Melting glaciers – potentially raising sea level up to 6m globally
• Melting glaciers – less solar heat reflection back to universe but more heat absorbed to sea water and soil to raise temperatures
• Melting permafrost – release of methane gas to atmosphere, much more potent greenhouse gas than CO₂
• Changing the directions of ocean currents – unexpected weather conditions
• Hurricanes and tornados may become more frequent
• Several species of animal likely vanish on the earth (eg polar bear)
• Already dry regions may become even drier
• Already hot regions may become even hotter

• The common target has been to restrict the overall temperature increase to 2 °C. The target seems to fade away...
1. Expanding Challenges

1.2. Urban Population in the World

- Continually increasing urban populations
- Importance of low carbonization efforts, led by cities

w1 needs full axis label for population size - is it billions?
wiltshire; 22.6.2012
1. Expanding Challenges

1.3. Energy per Sector in EU (1)

In 2009 in EU, RES covered 16% of primary energy production, with fossil fuels at 55% and nuclear 29%.

The target is to raise the RES share to 20% by 2020.

<table>
<thead>
<tr>
<th>Coal and Peat</th>
<th>Crude Oil</th>
<th>Natural Gas</th>
<th>Nuclear</th>
<th>Hydro</th>
<th>Geo and Solar</th>
<th>Biofuels and waste</th>
<th>Heat</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>166443</td>
<td>104974</td>
<td>153014</td>
<td>233139</td>
<td>28165</td>
<td>19760</td>
<td>111160</td>
<td>631</td>
<td>817286</td>
</tr>
</tbody>
</table>

| | 20 % | 13 % | 19 % | 29 % | 3 % | 2 % | 14 % | 0 % | 100 % |
|----------------|-----------|------------|---------|-------|--------------|--------------------|------|-------|

Values expressed in thousand tonnes of oil equivalent (ktoe)

1. Expanding Challenges

1.3. Energy per Sector in EU (1)

In 2009 in the EU, the residential sector (housing), transport and services accounted for 49% of total energy consumption.

The table shows consumption per sector in million tonnes of oil equivalent (Mtoe):

<table>
<thead>
<tr>
<th>Sector</th>
<th>Consumption (Mtoe)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry</td>
<td>255</td>
<td>17%</td>
</tr>
<tr>
<td>Transport</td>
<td>322</td>
<td>21%</td>
</tr>
<tr>
<td>Other</td>
<td>476</td>
<td>31%</td>
</tr>
<tr>
<td>Residential</td>
<td>295</td>
<td>19%</td>
</tr>
<tr>
<td>Services</td>
<td>141</td>
<td>9%</td>
</tr>
<tr>
<td>Agriculture / Forestry</td>
<td>25</td>
<td>2%</td>
</tr>
<tr>
<td>Fishing</td>
<td>1</td>
<td>0%</td>
</tr>
<tr>
<td>Non-Specified</td>
<td>15</td>
<td>1%</td>
</tr>
<tr>
<td>Total</td>
<td>1530</td>
<td>100%</td>
</tr>
</tbody>
</table>

1. Expanding Challenges

1.4. Challenge to Urban Structures (1)

Development of CO₂ reduction plans not only on an individual scale, but also at an entire city scale

(1) High-density redevelopment of urban centres in consideration of such factors as building height and use

(2) Development of public transportation

Source: The World Business Council for Sustainable Development [WBCSD], *Energy-Efficiency in Buildings*
1. Expanding Challenges

1.4. Challenge to Urban Structures (2)

- A compact urban structure both directly and indirectly influences emissions
 - Directly: Shorter utility lines and and roads
 - Indirectly: Energy system conversion, impact on traffic

Source: J. Kurnitski, www.sitra.fi
1. Expanding Challenge

1.5. Paradigm Shift from a Mass-Production Society to a Low-Carbon Society

- Farewell to mass-production and mass-consumption society
- Successful creation of a low carbon society will help bring about a paradigm shift

(Source: Pekka Huovila, The 2008 World Sustainable Building Conference)
2. Climate Change and Energy

2.1. Sustainability Concept (1)

“Sustainability ?”

First introduced in 1987: Brundtland Report, *Our Common Future*

The term has been used with diverse and evolving meanings.

However, these definitions usually include the following elements:

- Minimizing actions that degrade the planet's life support systems and living resources,
- Moving toward actions that are designed to restore and sustain these systems and resources.
2. Climate Change and Energy

2.1. Sustainability Concept (2)

<table>
<thead>
<tr>
<th>Sector</th>
<th>Main emission issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green-field construction</td>
<td>Tight requirements on energy efficiency</td>
</tr>
<tr>
<td>Rehabilitation construction</td>
<td>Fossil based heating of small houses
Electric appliances and heating in blocks of flats
Electric appliances of commercial and industrial buildings</td>
</tr>
<tr>
<td>Traffic</td>
<td>Management of traffic input/output
Share of electric vehicles</td>
</tr>
<tr>
<td>Urban structure</td>
<td>Compacting
Awareness of impacts</td>
</tr>
<tr>
<td>Decentralised production</td>
<td>Solar power and heat
Heat pumps
Wind power and biofuels at small scale</td>
</tr>
<tr>
<td>District heating</td>
<td>Renewable fuels
Waste to energy: incineration and heat recovery</td>
</tr>
<tr>
<td>Centralised power production</td>
<td>Wind power (centralised)
Carbon capture systems – CCS</td>
</tr>
</tbody>
</table>
2. Climate Change and Energy

2.1. Sustainability Concept (3)

- network
- master plan
- land use scenarios & energy scenarios
- criteria for architecture competition
- high performance in sustainability
- architecture & energy simulations

Source: A. Staffans, Aalto University
2. Climate Change and Energy

2.1. Sustainability Concept (4)

Steps to follow by the urban planner to integrate energy and emission issues to the plan in a sustainable way:

- Plan various drafts for alternatives for urban development

- Hire an energy/emission consultant to analyze the alternatives and to provide the alternative specific energy consumption and emission values as well as the investment and operational cost estimates

- Let the decision makers evaluate the alternatives based on the new quantitative consumption, emission and cost information

- Based on the decision and the quantitative information, plan the more advanced and sustainability plan for the urban community.
2. Climate Change and Energy

2.2. How to achieve a Carbon-free life? (1)

- Anytime, Anywhere Appropriate Appliances
- Increasing Efficiency
- Support for life
- Support for Choice
- Support for Purchase
- Transition to service consumption lifestyle
- Anytime, Anywhere Appropriate Appliances
- Increasing Efficiency
- Support for life
- Support for Choice
- Support for Purchase
- Transition to service consumption lifestyle

Source: Shuichi Ashina, National Institute for Environmental Studies (CGER/NIES) “Urban Planning and Sustainable Development”, March 4, 2010
2. Climate Change and Energy
2.2. How to achieve Low-Carbon Life? (2)

Leading citizens towards creation of low-carbon societies:

- Extremely difficult to reach the mid- and long-term reduction target set by governments by means of the current energy saving measures;

- Even if high-performance energy-saving buildings and cities are created, we cannot achieve the expected energy saving if citizens use energy extravagantly;

- How can we motivate people to change from a high-carbon to a low-carbon lifestyle?

- Presenting a model of the future low-carbon city in a visible form.

- Motivating people to be conscious of saving energy, thus leading them to a low carbon lifestyle.
2. Climate Change and Energy

2.3. Why Cities and Municipalities?

Because the cities and municipalities are:

- Administrative units directly connected to citizens’ lives
- The main bodies that draw up and execute policy measures
- They hold a viewpoint directly connected to citizens’ daily lives
- Responsible for promoting policies for EE and CO₂ emission reduction
- Influential to the stakeholders that consume energy
- Responsible for a stable energy supply in the region.

CO₂ emission reduction policies involve expectation of collaboration and co-operation among municipalities
2. Climate Change and Energy
2.3. Why Cities and Municipalities?

“When national political and world leaders talk about tackling Climate Change, leaving cities out of the equation is like fighting fire with a garden hose”

- Robert Doyle, Lord Mayor of Melbourne, Australia
2. Climate Change and Energy

2.4. Exercise: Carbon Footprint of Trainees (1)

A carbon footprint is the total amount of greenhouse gases produced both indirectly and directly by a human, organization, event or product.

For example: when a car is driven the engine burns fuel, creating an amount of carbon dioxide depending on the car’s fuel consumption and the distance the car is driven. A footprint is measured by assessing the amounts of greenhouse gasses emitted into the atmosphere by this product and is usually measured in tons of CO2.

A human’s carbon footprint is the sum of all emissions of CO2 into the atmosphere caused by that particular person’s activities in a given time period, usually a year.

Once organizations and individuals know the size of their carbon footprint, a strategy can be devised to reduce the amount of pollution caused by that person or organization. Carbon offsets are used to manage the amounts of carbon released into the atmosphere.
2. Climate Change and Energy

2.4. Exercise: Carbon Footprint of Trainees (2)

Ways of calculating your individual carbon footprint are available for free online on various Websites. Tables are also available online that provide a list of products and the amount of CO₂ released.

For instance:

The UP-RES Consortium

Contact institutions for this module: Aalto University

• Finland: Aalto University School of science and technology
 www.aalto.fi/en/school/technology/

• Spain: SaAS Sabaté associats Arquitectura i Sostenibilitat
 www.saas.cat

• United Kingdom: BRE Building Research Establishment Ltd.
 www.bre.co.uk

• Germany:
 AGFW - German Association for Heating, Cooling, CHP
 www.agfw.de
 UA - Universität Augsburg
 www.uni-augsburg.de/en
 TUM - Technische Universität München
 http://portal.mytum.de

• Hungary: UD University Debrecen
 www.unideb.hu/portal/en